
K IPR AND SOFTWARE

AUTHOR

Murali Neelakantan (bottom left) is a dual

qualified (Indian & English) lawyer and partner in

the intellectual property group at the London

office of Arnold & Porter. His practice is broad

based and he has advised on a wide variety of

matters including offshore IT, IP and business

process outsourcing. He is also regularly quoted

as an expert on Indian matters.

Alex Armstrong (bottom right) is an English

solicitor and associate in the intellectual property

group at the London office of Arnold & Porter.

He advises clients on a broad range of

information technology matters including

outsourcing, hardware supply and support,

software licensing and project agreements.

14 | Copyright World Issue # 164 | October 2006 www.ipworldonline.com

IN SUMMARY

– The suitability of a copyright or patent-

based regime for software programs is as

controversial a debate now as it was 25

years ago

– Both UK and US copyright regimes seek to

go beyond the concept of pure textual

copying and arrive at a broadly similar

result, though differences remain

– This article discusses whether the Da Vinci

Code case hints at a gradual shift towards

the US position, whether patent protection

is the answer and whether the market

provides its own form of protection

Source code,
object code &
the Da Vinci code

Source code,
object code &
the Da Vinci code
Arnold & Porter’s Murali Neelakantan and Alex Armstrong
examine the cross Atlantic debate on IPR protection for
software programs

Arnold & Porter’s Murali Neelakantan and Alex Armstrong
examine the cross Atlantic debate on IPR protection for
software programs

Copyright

www.ipworldonline.com October 2006 | Copyright World Issue # 164 | 15

IPR AND SOFTWARE K

What is worth copying is worth
protecting”. This statement is
only a crude approximation of

the central theme in a debate that remains
as controversial now as it was 25 years ago
– the suitability of a copyright or a patent-
based regime for software programs. This
article analyses the UK and US approaches
to protecting the intellectual property
rights (“IPR”) of software programs and
questions whether protection is required in
such a dynamic market place.

Copyright in the UK
In the UK copyright is infringed if (a) there
has been actual copying; and (b) a
“substantial part” of the work has been taken.
What amounts to a “substantial part” is a
question of fact and degree, and is the
question that has exercised the courts most
in the field of computer software.

In Cantor Fitzgerald v Tradition (UK)1, the

court considered whether the developers of a
rival bond-broking application had infringed
the claimant’s copyright by using an earlier
version of the claimant’s program as a
reference for their own application. A small
portion, 3.3%, of the claimant’s code was
found to have been used. The judge held on
the facts that there had been specific
instances of copying by the defendants, and
that the copying had, in these instances,
amounted to a substantial part of each
module concerned.

The case established that it was possible
for defendants to infringe a claimant’s
copyright at the “architecture” level (i.e. a
software program’s overall structure and
how the program allocated certain
functions to the various component
modules once each work had been analysed
as a whole and not as individual portions
of code). To determine whether the
infringing product copied a substantial
part of the claimant’s product, the court
assessed the existence of copyright in the
claimant’s code as a function of the amount
of skill and effort that has gone into
designing and developing it.

Copyright in the US
In the US, copyright is granted to a work
which is both: a) original, and b) “fixed in any
tangible medium of expression.”2 Copyright is
not afforded to any “idea, procedure, process,
system, method of operation, concept,
principle, or discovery, regardless of the form
in which it is described, explained, illustrated,
or embodied in [the] work”3.

In Computer Associates v Altai (1992)4,
Computer Associates alleged that Altai’s
“Oscar” program contained elements of
Computer Associates’ “Adapter” program.
The Court analysed the claimant’s
program for the “level of abstraction”,
retracing the developer’s steps back from
the final object code through to the
program’s conception, then proceeded to
“filter out” elements of the program (those,
dictated by efficiency, by external factors
and taken from the public domain5) and
finally grouped its findings into a “core of
protectable expression”6.

The US courts have identified the
“merger doctrine” as one of its central
themes in determining the “core of
protectable expression”. The underlying
principle of the doctrine is that “[w]hen
there is essentially only one way to express an
idea, the idea and its expression are inseparable
and copyright is no bar to copying that
expression” (Concrete Machinery Co. v. Classic
Lawn Ornaments, Inc.7). In the Computer

Associates case, the Court felt that the
merger doctrine was “an effective way to
eliminate non-protectable expression contained
in computer programs” because it allowed the
Court to disregard those elements of a
computer program which could only be
expressed in a certain way.

Comparisons of the UK and
US regimes
The exercise undertaken by the judge in
Cantor Fitzgerald is similar to the
abstraction exercise undertaken by the US
Court of Appeals in Computer Associates.
Both regimes seek to go beyond the
concept of pure textual copying and arrive
at a broadly similar result, although the
key difference remains the refusal by the
English courts to recognise the validity of
the “merger doctrine”.

Can we therefore conclude that the
English courts will value hard work rather
than protect an original and good idea, and
does the recent decision in Baigent and Leigh
v Random House (2006) (“the Da Vinci Code
case”) hint at a gradual shift towards the
American position?

The Da Vinci Code decision –
placing a value on ideas?
As in the Cantor Fitzgerald case, the judge
in the Da Vinci Code case looked for the
expression of a combination of ideas,
structure and content which taken
together constituted a substantial part of
the earlier work8. The claimants were
required to show that there had been a
“putting together of facts, themes and ideas by
them as a result of their efforts” and that Dan
Brown had copied these.

The English law of copyright has long
established that this form of abstraction is
a qualitative rather than a quantitative
test9. The judge decided that while Mr
Brown had used facts and some of the
“central themes” which were contained in
The Holy Blood and Holy Grail, facts were
not copyrightable per se and the “central
themes” reproduced in The Da Vinci Code
were too abstract to constitute a
“substantial part” of the earlier work. This
conclusion, combined with a finding that
Mr Brown and his wife had devoted
significant skill and effort to the research
and development of the content of The Da
Vinci Code, led him to find in their favour.

From the above analysis it could be
argued that when assessing “substantiality”
there is a need to consider the originality
of an idea, at least as part of the overall
test,10 although the English courts have

“

Copyright

16 | Copyright World Issue # 164 | October 2006 www.ipworldonline.com

K IPR AND SOFTWARE

been wary to apply literary cases to those
involving software.

Is copyright a suitable form of
protection for software developers?
Problems arise for software developers when
their ideas cannot be protected (to the
extent they cannot be expressed on a
medium). Therefore object code, source
code, program structures and program notes
(taken together) constitute the expression of
the developer’s idea. The expression of the

developer’s ideas cannot be protected to the
extent they can be expressed differently by
someone else without reference to the
developer’s object code, source code,
program structures and program notes.

Is patent protection the answer?
While software is not patentable in the
UK, software and business processes are
patentable in the US, although it is
arguable whether this has had a positive
impact on the market.

In order to obtain the benefit of patent
protection in the US, an invention must
satisfy four criteria: (1) patent-eligible
subject matter; (2) useful; (3) novel; and (4)
non-obvious11.

The US courts have taken a gradual road
towards granting software products the
benefit of patent protection. Since the 1981
case of Diamond v. Diehr (where the US
Supreme Court ordered the USPTO to
grant a patent in relation to an invention
even though the substantial part of the
invention consisted of a computer program),
the USPTO has gradually extended patent
protection to a wide variety of computer-
based software products and business
processes. In the case of State Street Bank &
Trust Co. v. Signature Financial Group, Inc12,
the Court held that an algorithm is capable
of receiving patent protection if it is useful,
concrete, and produces a tangible result.
These cases aided the establishment of the
now settled regime for the protection of
algorithms – the foundations of any
computer software program. This
additional layer of protection for

algorithms, while welcomed by some, has
had some unusual side-effects on the
software industry in the US.

With the gradual extension of patent
protection to software programs, the
software industry has witnessed a
significant growth in the number of patents
being sought by large organisations (i.e. to
generate revenue and to ward off the holders
of applications for patents for similar ideas).
The high-profile litigation between Canada’s
Research in Motion Limited (“RIM”) the

makers of the Blackberry handheld device
and NTP Inc.(a US-based company), being a
case in point.

RIM had spent a lot of time, effort and
money developing the Blackberry system.
However, the US District Court was only
concerned with the violation of the monopoly
rights granted in respect of NTP’s idea, not
their expression as a tangible product. The
fact that NTP had tried (and failed) to market
its invention 14 years ago was no bar to it
preventing RIM from marketing its own
products using NTP’s idea notwithstanding
the value (both commercial and tangible) of
the RIM product.

The case is significant because it polarises
the debate on the suitability of patent
protection for software programs and
highlights potential problems software
developers face when trying to rely on
copyright protection for their programs.

Does the market provide its own
form of protection?
The debate over the respective merits of
copyright protection and patent protection
are all driven by one central theme:
appropriate commercial rewards for the
creators of innovative software programs
through control of the markets for which
their products were created. Software
developers are currently caught between the
inadequacies of the copyright regimes in the
UK and US and too much protection from
the US patent regime. Are either of these
suited to the developer who creates a
software product based on a new idea?

Discussions surrounding the suitability of

copyright or patent protection as the most
effective means of protecting a developer’s
research and development often ignore one
crucial point: the market ultimately decides
whether a product succeeds or fails. A
developer can make a commercial success out
of a new idea if he is able to generate an
original and unique idea that can be made into
software ahead of the competition and then
marketed efficiently ahead of the competition.
The developers enjoy a de facto monopoly
while their competitors try to catch up.

Even with the comparatively weaker
protections offered by copyright, a rival
cannot develop a competing product quickly
from scratch. A competitor cannot avoid the
time penalties for which the market will
penalise him by simply reverse-engineering
a product and adapting only superficial
aspects of it to disguise the infringement. He
would (a) fall foul of the law and (b) would
not fool the market. In addition, if a
developer released a product to the market
(having kept the idea secret) then regardless
of how the law protects the idea, he can
release a newer and improved version of the
end product by the time a rival has caught
up. In other words, competitive advantage is
maintained for as long as the developer
continues to develop and improve an idea. K

Notes

1 [2000] RPC 95

2 17 U.S.C. at 102(a).

3 Ibid. 102(b).

4 982 F.2d 693, 23 USPQ2d 1241

5 The Court explained the general concept of the

abstraction process as follows: “In ascertaining

substantial similarity under this approach, a

court would first break down the allegedly

infringed program into its constituent structural

parts. Then, by examining each of these parts

for such things as incorporated ideas,

expression that is necessarily incidental to those

ideas, and elements that are taken from the

public domain, a court would then be able to

sift out all non-protectable material.”

6 An approximate equivalent to the concept of

“a substantial part” in English law

7 43 F.2d 600, 606 [6 USPQ 1357] (1st Cir. 1988).

8 Relying on the literary works case of

Ravenscroft v Herbert [1980] to establish that

while facts, themes and ideas cannot be

protected per se, the way in which these

facts, themes and ideas are put together (the

work’’s “architecture”) could be.

9 See Ladbroke v William Hill [1964] 1 W.L.R 273.

10 Baigent & Leight v Random House [2006]

EWHC 719, paragraphs 268 and 270

11 35 U.S.C. 101-103.

12 149 F.3d 1368, 1373 (Fed. Cir. 1998).

“The expression of the developer’s ideas cannot
be protected to the extent they can be expressed
differently by someone else without reference to the
developer’s object code, source code, program
structures and program notes”

“The expression of the developer’s ideas cannot
be protected to the extent they can be expressed
differently by someone else without reference to the
developer’s object code, source code, program
structures and program notes”

Copyright

