
Computer
Internet

 Lawyer

Computer
Internet&

The The

Volume 23 ▲  Number 10 ▲  OctOber 2006 Arnold & Porter, editor-in-chief *

For many years, the courts in England and the
United States have tried to balance the protec-

tion of an author’s skill and labor with the com-
peting notion of a free market in which ideas are
adapted in the search for newer and better prod-
ucts. It is sometimes argued that “what is worth
copying is worth protecting.” This statement is
only a crude approximation of the central theme
in a debate that remains as controversial now as it
was 25 years ago—the suitability of a copyright or
a patent-based regime for software programs.

For purposes of this article, we have restricted
our analysis to the two markets that are likely to be
of most interest to the reader—the United States
and the United Kingdom. The debate has, how-
ever, taken on truly global proportions, with new
and exciting markets (and competitive pressures)

emanating from the Far East, India, and China
most notably. The questions asked in this article
are designed therefore to apply globally.

Copyright in Software Programs
The ease with which copyright is granted

sometimes betrays its limitations. Is copyright still
“fit for purpose” as the global market for software
continues its inexorable expansion?

In order to answer this question, this section
will seek to:

• Examine the existing state of copyright law as it
applies to software programs; and

• Determine whether current copyright law
remains flexible enough to capture the dra-
matic changes to the methods used by devel-
opers to create software programs.

The English Law of Copyright
The English law of copyright is often

described as drawing clear dividing lines
between the idea (which is not protectable per

Source Code, Object Code, and The Da Vinci
Code: The Debate on Intellectual Property
Protection for Software Programs
By Murali Neelakantan and Alex Armstrong

Murali Neelakantan is a dual qualified (Indian and
English Law) partner and Alex Armstrong is an
associate at the London office of Arnold & Porter LLP.
Arnold & Porter acted for the defendants in the Da
Vinci Code case.

� • The Computer & Internet Lawyer Volume 23 • Number 10 • October 2006

se) and the expression of an idea (which would be).
This is a misleading simplification of the relevant
provision of the Copyright, Designs and Patent Act
1988,1 which requires that a work be recorded “in
writing or otherwise”2 before it can be afforded the
protection of copyright. The law says that copyright
is infringed if (a) there has been actual copying, and
(b) a “substantial part” of the work has been taken.
What amounts to a “substantial part” is a question of
fact and degree and is the question that has exercised
the courts most in the field of computer software.

In Cantor Fitzgerald v. Tradition (UK),3 the court con-
sidered whether the developers of a rival bond-broking
application had infringed the copyright in the claimant’s
program. The defendants were ex-employees of the claim-
ant and had used an earlier version of the claimant’s pro-
gram as a reference for their own application. The court
also found that the defendants had copied a small portion
(3.3 percent) of the claimant’s code into the defendants’
own program. The judge held on the facts that there had
been specific instances of copying by the defendants and
that the copying had, in these instances, amounted to a
substantial part of each module concerned.

The case seeks to shed some light on how the law
of copyright can be applied to software programs. The
judge in Cantor Fitzgerald made some important points:

• It was possible for the defendants to infringe the
claimant’s copyright at the “architecture” level, that
is, its overall structure and how the program allocated
certain functions to the various component modules.

• The definition of what constituted a “substantial
part” of a software program required the court to
consider each work as a whole, not the individ-
ual portions of code. He disagreed with the High
Court of Australia in Autodesk v. Dyason (1992),
which had found that any portion of code, no mat-
ter how small, would form a “substantial part” of
the work since in its absence the application as a
whole would fail to function correctly or at all. The
Australian court’s approach was technologically
correct but legally inaccurate.

• In determining whether the infringing product cop-
ied a substantial part of the claimant’s product, the
court would assess the existence of copyright in the
claimant’s code as a function of the amount of skill and
effort that had gone into designing and developing it.

The US Law of Copyright
In the United States, a work may be subject to copy-

right protection if it is both: (1) original and (2) “fixed

in any tangible medium of expression.”4 Copyright pro-
tection is not available to any “idea, procedure, process,
system, method of operation, concept, principle, or dis-
covery, regardless of the form in which it is described,
explained, illustrated, or embodied in [the] work.”5

In Computer Associates v. Altai,6 Computer Associ-
ates alleged that Altai’s “Oscar” program contained ele-
ments of Computer Associates’ “Adapter” program. The
court approached the problem by undertaking a series
of detailed analyses into the claimant’s program. It first
analyzed the “level of abstraction,” retracing the devel-
oper’s steps back from the final object code through to
the program’s conception. The court then proceeded to
“filter out” elements of the program that were (1) dic-
tated by efficiency; (2) dictated by external factors; and
(3) taken from the public domain.7

The court was able to group its findings into a “core
of protectable expression,” an approximate equivalent to
the concept of “a substantial part” in English law. On
the facts, the court found that the defendants had not
appropriated this core of protectable expression.

It should be noted that the court considered the
merger doctrine as one of its central themes in deter-
mining the core of protectable expression. The doctrine’s
underlying principle is that “[w]hen there is essentially
only one way to express an idea, the idea and its expres-
sion are inseparable and copyright is no bar to copying
that expression.”8 In Computer Associates, the court felt
that the merger doctrine was “an effective way to elimi-
nate non-protectable expression contained in computer
programs” because it allowed the court to disregard
those elements of a computer program that could only
be expressed in a certain way.

Comparisons Between the UK and US Regimes
The analysis of the judge in Cantor Fitzgerald is

similar to the abstraction exercise of the US Court of
Appeals in Computer Associates. Both regimes seek to go
beyond the concept of pure textual copying and arrive
at a broadly similar result, although the key difference
remains the refusal by the English courts to recognize
the validity of the merger doctrine. English courts will
consider originality as a function of the skill and effort
used to create the work, even if in some cases there is
no real scope for alternative expression, and will refuse
to determine originality through subjective judgment
of the ideas that underpin the work. The genesis of this
position lies in the numerous compilation cases, most
notably Ladbroke v. William Hill (1964) and the posi-
tion reflects a desire by the English courts to remove
subjectivity from the assessment of what is and is not
copyrightable and “compensate for a lack of a roving
concept of unfair competition.”9

Source Code, Object Code, and The Da Vinci Code…

Volume 23 • Number 10 • October 2006 The Computer & Internet Lawyer • �

Can we therefore conclude that the English courts
will value hard work rather than protect an original and
good idea?

The Da Vinci Code Decision:
Placing a Value on Ideas?

Does the recent decision in Baigent and Leigh v. Ran-
dom House (2006) (Da Vinci Code) hint at a gradual shift
towards the US position?

As in the Cantor Fitzgerald case, the judge in the
Da Vinci Code case was looking for the expression
of a combination of ideas, structure, and content
that, taken together, constituted a substantial part of
the earlier work. The judge referred to another case
of literary copying (Ravenscroft v. Herbert (1980)) in
order to introduce the established rule that while
facts, themes, and ideas cannot be protected per se, the
way in which these facts, themes, and ideas are put
together (the work’s “architecture”) could be. The
judge went on to say that the claimants would need to
“show that there is a putting together of facts, themes
and ideas by them as a result of their efforts” and that
Dan Brown had copied these. He then undertook a
painstaking analysis of The Holy Blood and Holy Grail
in order to draw a firm boundary between what was
or was not protected.

The English law of copyright has long established
that this form of abstraction is a qualitative test rather
than a quantitative one.10 It is a test that is similar in
many ways to that of the court in Cantor Fitzgerald.
The judge decided that, while Mr. Brown had used
facts and some of the “central themes” that were con-
tained in The Holy Blood and Holy Grail, facts were
not copyrightable per se and that the “central themes”
reproduced in The Da Vinci Code were too abstract
to constitute a “substantial part” of the earlier work.
Coupled with the finding that Mr. Brown and his wife
had devoted significant skill and effort to the research
and development of the content of The Da Vinci Code,
it was no surprise that the judge found in favor of the
defendants. The result was that Mr. Brown was entitled
to express the themes he had picked from The Holy
Blood and Holy Grail in a way and using methods that
were his own.

The factual outcome of the case may have little or no
relevance to software developers. Indeed the courts in
England have always been uncomfortable about apply-
ing tests used to determine substantiality in purely liter-
ary cases to those involving software. It could be argued,
however, that the analysis undertaken by the judge as
part of his assessment of “substantiality” appeared to
imply the need to consider the originality of an idea, at
least as part of the overall test.11

The Problem
As it currently stands, copyright law (as it applies to

software developers) can be summarized as follows:

• The developer’s ideas cannot be protected to the
extent they cannot be expressed on a medium.

• Therefore, object code, source code, program struc-
tures and program notes (taken together) constitute
the expression of the developer’s idea.

• The expression of the developer’s ideas cannot be pro-
tected to the extent that the ideas can be expressed
differently by someone else without reference to the
developer’s object code, source code, program struc-
tures, and program notes.

Does this emphasis on “perspiration” rather than
“inspiration” capture the ways in which software devel-
opers create their products?

Software development has evolved significantly
since the early days of programming. Programs have
become more complex and the industry has grown
in such a way that developers are increasingly reliant
on shorter development cycles in order to preserve or
enhance their competitive advantage. This has led the
industry to adopt a natural way of making itself more
efficient. Ever since the software industry evolved
toward modular or object-orientated class-based pro-
gramming (modules of code woven together to create
a new piece of code), vast libraries of pre-packaged
code have become available to many software devel-
opers who wish to use them under license in their
own works. Software is now a complex mixture of
source code (code created by the developer using a more
human, high-level language) and object code (generally
low-level machine-specific code, usually expressed as a
collection of binary digits to call specific functions of
a computer system).

Source code is usually compiled (translated into object
code) and then linked to static and dynamically-linked
object code libraries (some of which are off-the-shelf,
others licensed from other developers), or increasingly
linked to complex databases.

As a result of this push for standardization, it could be
argued that the problem that software developers now
face as a result of this shift in programming technique
lies less in their ability to protect their code, but more
in their ability to protect the algorithms (the ideas) that
are expressed in their code. Supporters of the merger
doctrine in the US recognize this issue,12 which is the
essence of the copyright versus patent debate as it applies
to software programs.

Source Code, Object Code, and The Da Vinci Code…

� • The Computer & Internet Lawyer Volume 23 • Number 10 • October 2006

The Expression of the Problem

The main disadvantage of copyrights as a protec-
tion for algorithms is that copyrights do not protect
the functionality or the technique of an algorithm.
This disadvantage is insignificant if the algorithm
is not the essence of the computer program. For
instance, in video games, the meaningful part of
the computer program is the interaction with the
user, not the method used for solving a problem.
However, when an algorithm is developed as a new
method for solving a problem, the general idea and
functionality of the algorithm—i.e., the inventive
leaps—[are] not protected.13

For the developer who seeks to protect a truly new
algorithm, this creates two classes of commercial prob-
lems, which can be expressed as follows:

•	 Problem	 1: Two or more developers discover the
same algorithm separately and then go on to express
the same algorithm using different program structures
and different code. The algorithm is new and original.
They are each equally deserving of the protection of
copyright law, but in absolute commercial terms, they
will share the potential market for the algorithm with
the other.

•	 Problem	2:	One developer discovers a new and orig-
inal algorithm and then expresses this algorithm using
a unique program structure and unique code. He has
copyright protection in respect of the idea as expressed
in the code, but in absolute commercial terms does
not have sole control of the potential market for the
algorithm; another developer could express the algo-
rithm (the idea) differently using different code and
market a rival product accordingly.

These problems share a common feature: The
developer is not in absolute control of the market
generated by his idea. If, in the commercial sphere,
the goal of investing time and effort in creating new
ideas and solutions is to achieve optimum commer-
cial gain, then should not the intellectual property
grant a monopoly right to the creator of these ideas
or solutions?

Is Patent Protection the Answer?
In the United Kingdom, software is not patentable,

but the debate over whether it should be is conjoined
with the continuing debate in the European Parliament
over the ambit of the proposed Directive on computer
implemented inventions.

In the United States, software and business processes
are patentable, but whether this system has a positive
impact on the market is debatable.

Evolution
To obtain the benefit of patent protection, an inven-

tion must be (1) patent-eligible subject matter; (2) use-
ful; (3) novel; and (4) nonobvious.14

The US courts have taken a gradual road toward
granting software products the benefit of patent pro-
tection. Unlike the European Union, where the debate
rages over the need to implement a community-wide
software patent Directive, the US courts have adapted
their position with regard to the patentability of software
and business processes. Since the 1981 case Diamond v.
Diehr15 (in which the US Supreme Court ordered the
USPTO to grant a patent in relation to an invention
even though the substantial part of the invention con-
sisted of a computer program), the USPTO has gradually
extended patent protection to a wide variety of com-
puter-based software products and business processes.

An algorithm (as applied to computer programs) can be
thought of as a machine—a computer that is hard-wired
to perform the algorithm. In State Street Bank & Trust Co.
v. Signature Financial Group, Inc.,16 the Federal Circuit held
that an algorithm is capable of receiving patent protection
if it is useful, concrete, and produces a tangible result.

Having overcome the conceptual difficulty of accept-
ing algorithms as patentable per se, the courts brought
further refinements to the requirements of usefulness,
novelty, and non-obviousness. There is now a settled
regime for the protection of algorithms, the founda-
tions of any computer software program. The gradual
introduction of this additional layer of protection for
algorithms, however, while welcomed by some, has had
unusual side effects on the US software industry.

Distortion?
Since the gradual extension of patent protection to

software programs, the software industry has witnessed a
significant growth in the number of patents being sought
by large organizations. As of December 2003, “software
and Internet-related patents account[ed] for more than
15 percent of all patents granted.”17 Large organizations
are pursuing patents for two primary purposes:

1. Revenue	 generation: monopolizing ideas with a
view to licensing them to developers who will trans-
form or incorporate them into tangible products; and

2. Deterrent	 value: warding off the holders of and
applicants for patents for similar ideas with the threat
of protracted and necessarily expensive litigation.

Source Code, Object Code, and The Da Vinci Code…

Volume 23 • Number 10 • October 2006 The Computer & Internet Lawyer • �

The clearest manifestation of these side effects
occurred recently in connection with the high-profile
litigation between Canada’s Research in Motion Lim-
ited (the makers of the Blackberry handheld device) and
NTP Inc. (a US-based company). NTP’s sole purpose,
it appears, is to acquire and maintain a portfolio of pat-
ents with a view to bringing infringement proceedings
against any person or organization that attempts to use
any technology that is protected by those patents (a so-
called patent troll). NTP sued Research in Motion alleg-
ing infringement of several of NTP’s patents. The case
went through the litigation process and ultimately ended
with Research in Motion agreeing to pay the sum of US
$613 million to NTP in settlement of all claims. The case
demonstrates a fundamental feature of (or problem with)
the modern US intellectual property protection system.

Research in Motion had spent a lot of time, effort,
and money developing the system from which it has
reaped stellar commercial rewards. The US district court
was concerned only with the violation of the monopoly
right granted in respect of NTP’s idea, however, not its
expression as a tangible product. The fact that NTP had
tried (and failed) to market its invention 14 years prior
was no bar to its preventing Research in Motion from
marketing its own products using NTP’s idea notwith-
standing the value (both commercial and tangible) of
the Research in Motion product.

The case is significant because it polarizes the debate
on the suitability of patent protection for software pro-
grams. It gives further ammunition to those who believe
that ideas should be prized above endeavor and com-
mercial skill, and it reinforces the argument from others
that extending patent protection for software programs
creates unnatural distortions in a market that has thrived
against the backdrop of existing copyright laws.

Despite the obvious passions expressed by those on
opposing sides, it is possible to view the debate in prag-
matic, commercial terms.

The Market Forces Argument
The debate over the respective merits of copyright

protection and patent protection is driven by one cen-
tral theme: appropriate commercial rewards for the cre-
ators of innovative software programs through control
of the markets for which their products were created.

A Commercial Question
The current differences in the regimes that exist in

England and in the United States show that developers
are caught between two conflicting pressures: (1) inad-
equate protection (the current risk with existing Eng-
lish-style copyright-only regimes) and (2) too much
protection (the stifling of healthy competition and the

creation of unnatural distortions in the market, as seen
in US-style patent regimes).

Which regime is best suited to the developer who
creates a software product based on a new idea?

The Commercial Answer: Theory
The debate over the suitability of copyright or patent

protection as the most effective means of protecting a
developer’s research and development often ignores one
crucial point: The market ultimately decides whether a
product succeeds or fails. A developer can make a com-
mercial success out of a new idea if he is able to follow
three simple rules:

1. His idea is original and unique.

2. He can translate that idea into software ahead of the
competition.

3. He can bring the resulting product to market effi-
ciently ahead of the competition.

These three rules work because the market recognizes
the value of marketing new and original ideas ahead of
the competition. It allows the developer to enjoy a de
facto monopoly while the others try to catch up.

The Commercial Answer: Applied
Even with the comparatively weaker protections

offered by copyright, we know that a rival cannot
develop a competing product quickly from scratch. He
cannot avoid the time penalties for which the market
will penalize him by simply reverse engineering a prod-
uct and adapting only superficial aspects of it to dis-
guise the infringement. He would (1) fall foul of the law
and (2) would not fool the market. In addition, if one
released a product to the market (having kept the idea
secret), then regardless of how the law protects the idea,
one can release a newer and improved version of the
end product by the time a rival has caught up. In other
words, an inventor can maintain a competitive advan-
tage for as long as he develops and improves an idea.

As all developers know, turning a good idea into a
successful product is hard work. The idea is only the
beginning. The Da Vinci Code case confirms the view
that the English courts will consider (but ultimately sub-
ordinate) ideas and themes to the skill and effort used to
express them. Perhaps this is no accident. Genius, after
all, is 1 percent inspiration and 9 percent perspiration.

Notes
1. Sections 3(2), 178 (for definition of “writing”).

2. Id.

Source Code, Object Code, and The Da Vinci Code…

� • The Computer & Internet Lawyer Volume 23 • Number 10 • October 2006

3. Cantor Fitzgerald v Tradition (UK), RPC 95 (2000).

4. 17 U.S.C. § 102(a).

5. Id. § 102(b).

6. Computer Associates v Altai, 982 F.2d 693 (1992), 23 U.S.P.Q.
2d 1241.

7. The court explained the general concept of the abstraction
process as follows: “In ascertaining substantial similarity under
this approach, a court would first break down the allegedly
infringed program into its constituent structural parts. Then, by
examining each of these parts for such things as incorporated
ideas, expression that is necessarily incidental to those ideas,
and elements that are taken from the public domain, a court
would then be able to sift out all non-protectable material.”

8. Concrete Machinery Co. v. Classic Lawn Ornaments, Inc., 843
F.2d 600, 606 (1st Cir. 1988).

9. Cornish & Llewelyn, Intellectual Property: Patents, Copyright,
Trade Marks and Allied Rights (5th ed.) at 391.

10. See Ladbroke v. William Hill, 1 W.L.R 273 (1964).

11. Baigent & Leight v. Random House, EWHC 719 (2006),
¶¶ 268 and 270.

12. See Melville B. Nimmer & David Nimmer, Nimmer on
Copyright, § 13.01, at 13-65 and 13-66-71: “[I]n many

instances it is virtually impossible to write a program to
perform particular functions in a specific computing envi-
ronment without employing standard techniques. [. . .] This
is a result of the fact that a programmer’s freedom of design
choice is often circumscribed by extrinsic considerations
such as (1) the mechanical specifications of the computer on
which a particular program is intended to run; (2) compat-
ibility requirements of other programs with which a program
is designated to operate in conjunction; (3) computer manu-
facturers’ design standards; (4) demands of the industry being
serviced; and (5) widely accepted programming practices
within the computer industry.”

13. Allen Clark Zoracki, “Comment: When Is An Algorithm
Invented? The Need For A New Paradigm For Evaluating An
Algorithm For Intellectual Property,” 15 Alb. L.J. Sci. & Tech.
579 (2005).

14. 35 U.S.C. §§101-103.

15. Diamond v. Diehr, 450 U.S. 175 (1981).

16. State Street Bank & Trust Co. v. Signature Financial Group,
Inc., 149 F.3d 1368, 1373 (Fed. Cir. 1998).

17. Jonathan Krim, “Patenting Air or Protecting Property? Infor-
mation Age Invents a New Problem,” Wash. Post, Dec. 11,
2003.

Source Code, Object Code, and The Da Vinci Code…

Reprinted from The Computer & Internet Lawyer, October 2006, Volume 23, Number 10, pages 1 to 5,
with permission from Aspen Publishers, Inc., a Wolters Kluwer business, New York, NY,

1-800-638-8437, www.aspenpublishers.com.

