ARNOLD & PORTER LLP

Drugs, Vaccines, and Devices Public Health, Private Industry and the Limits of Regulation **Symposium on Risks Posed by New Biomedical Technologies**

> Arthur N. Levine and William W. Vodra University of Minnesota

May 19, 2006

Public Concerns about Products

- Lack of important on-label information
 - Inadequate safety testing, resulting in patients injuries and product withdrawals
 - No "real world efficacy" and comparisons with other options
 - Subpopulation gaps (pediatrics, geriatrics, women, racial and ethnic groups)
- Off-label promotion and use
 - Little or no safety or effectiveness data

Public Concerns about Priorities

- New products not really important
 - "Me-too" drugs, not true innovations
 - Drugs for "lifestyles", not for saving lives
- Neglect of prevention (vaccines) and cures
- Industry driven by marketing, not science
 - Research for new uses (or ad claims)
 - R&D spending about 1/2 of marketing and administration budget
 - "Creation of diseases" through marketing

ARNOLD & PORTER LLP

Public Preferences

Safe products

- Either zero risk or a well-defined safety profile
- No more surprises
- High value products
 - Life saving or extending
 - Disease preventing
- Low cost products (for users and insurers)
- Evidence-based comparative choices

Our Model for Development of New Biomedical Technologies

- Responsibility for basic medical research lies with government researchers, academia, and charities
- Responsibility for product development lies with the private sector
 - Decentralized decision-making
 - Reliance on profit incentives to raise capital for R&D
- Responsibility for the safety and effectiveness of technology development and transfer lies with regulatory agencies

Classic View of Regulation

- Regulators (*e.g.*, FDA) are to enforce rules
 - Enforcement tools are primary coercive (*e.g.*, civil and criminal penalties, prohibitory injunctions)
 - Tools are "sticks" which offer no incentive other than the avoidance of pain and loss
- Regulators are not to tell industry what to do, only what not to do

Better View of Regulation

- Regulators and regulatory schemes can provide incentives to encourage research in certain directions or on certain issues
 - Regulators have discretion within parameters
 - Statutory authority is essential for other incentives
- BUT, incentives remain constrained and impose limits on what regulation can accomplish

Discretionary Options for Regulators

- Create incentives by giving favored treatment to desired products
- Examples
 - 1. Prioritize applications for review
 - 2. Provide guidance on pathway to approval
 - 3. Permit approval on less-than-complete data, with post-approval studies
 - 4. Improve scientific basis for decisions

(1) **Prioritized Application Process**

- FDA began for drugs in early 1980s
 - Classified depending on predicted therapeutic contribution compared to existing therapies
 - More important drugs got higher priority
 - Not limited to life-saving drugs
 - Best case: AZT for AIDS (1987)
- Prescription Drug User Fee Act (PDUFA) legislation (1992-2007)
 - Two classes (priority and non-priority)
 - Shorter review deadlines for priority (6 vs. 10 months)
- Congressional ratification of "fast track" (1997)

(2) Guidelines to Expedite Development

- Begun in 1970s by FDA for drugs and devices
 No overt priority scheme obvious, but clear hints
- Major leap forward with AIDS and cancer products starting in late 1980s
 - Surrogate endpoints
 - Trial design to reduce or eliminate placebos
- Expanded greatly under PDUFA
 - More resources to produce
 - Wider dissemination via Internet

(3) Accelerated Approval with Subsequent Studies (slide 1 of 3)

- First use was in 1969 with levodopa
- Concept
 - Approve only based on short-term safety and efficacy
 - Defer other questions to post-approval (*e.g.*, long-term safety, subpopulation studies)
- Limited to drugs providing meaningful improvement over existing therapies for serious or life-threatening diseases

(3) Accelerated Approval with Subsequent Studies (slide 2 of 3)

- Generally requires post-approval studies to confirm effectiveness (if based on endpoint other than mortality or irreversible morbidity) and safety
 - Can include subpopulations, other stages of disease, concomitant drug, improved dosing regimens
- FDA can impose restrictions on clinical use, pre-clear marketing materials, and expedite withdrawal of product if it proves unsafe or ineffective

(3) Accelerated Approval with Subsequent Studies (slide 3 of 3)

- Problems encountered by FDA and industry
 - Not all studies requested by FDA are meritorious, scientifically feasible, or even ethical
 - Lack of consistent standards or procedural safeguards
 - Inability of FDA to track commitments
 - Lack of effective enforcement tools for failure to do studies
 - Withdrawal of valuable product unrealistic

(4) Improving Scientific Basis for Decisions

- FDA believes current requirements are becoming obsolete in light of new genomic information and tools
 - Biomarkers for potential effectiveness, safety risks
 - Surrogate endpoints in lieu of full trials
- FDA intends its new Critical Path Initiative to accelerate identification, validation, and implementation of new tools

Observations on Discretionary Options of Regulatory Agencies

- Limited (even marginal) influence on economic incentives
- Cannot exclude or ignore disfavored products altogether
- Constrained by political acceptability
 - Rapid approval or conditional approval is fine, until it proves to have been a mistake in a specific case

Statutory Schemes to Provide Regulatory Incentives

- Focused directly on increasing financial rewards for favored products
- Not part of patent laws
 - Not subject to requirements for patentability
 - Not enforced by civil actions in court
- Part of regulatory process
 - Implemented by regulators

- 1. Orphan Drug Act (1983)
 - Limited to drugs with potential use <200,000/year
 - FDA may not approve the same drug for same use for 7 years after 1st approved
 - Only available if product is approved
 - Runs concurrently with any patent protection (*i.e.*, not limited to unpatentable products)

- 2. Hatch-Waxman Act (1984)
 - Available for all "new chemical entities" without preference for any type of product or therapeutic contribution
 - FDA may not approve "abbreviated" application for same drug for 5 years after 1st approved (of for new use of a drug for 3 years after 1st approved for that use)
 - Runs concurrently with any patent protection

- 3. Hatch-Waxman Act (1984)
 - Available for a generic copy of an innovator, if the innovator's patent exclusivity is successfully defeated or evaded
 - Incentive here is to bring generic competition to the market as early as possible
 - FDA may not approve 2nd "abbreviated" application for same drug for 180 days after 1st approved and can enter the market

- 4. Pediatric Exclusivity Provisions (1997)
 - Available for any drug which is tested in response to FDA request to determine safety and effectiveness in one or more of four sub-adult populations
 - No requirement that drug be safe or effective, only that its safety and efficacy be determined
 - Delays the date on which FDA may first approve a competing application by 6 months
 - Thus, extends exclusivity periods under Orphan Drug Act and Hatch-Waxman

Observations on Statutory Schemes for Regulatory Incentives

- Can be very potent
 - But, as with patents, ultimate value depends on actual market for product protected
- No necessary correlation between the cost (or risk) to gain the financial incentive and its economic value
 - Can create political controversies
- The rewards are not always available

Authority to Compel Specific Research: Introduction

- The two categories discussed so far have dealt with incentives to encourage the direction of research
- The critical question, now, is whether regulators can order that certain research be done?
 - Bear in mind, violation of an order can result in civil or criminal sanctions under the overall regulatory scheme

Implicit Authority to Compel Specific Research (slide 1 of 2)

- FDA rules require "adequate directions" in labeling for all "intended uses"
- Manufacturers required to assess safety and effectiveness for high-risk populations covered by approved use
 - Geriatrics
 - Women generally, and of child-bearing potential in particular

Implicit Authority to Compel Specific Research (slide 2 of 2)

- In mid-1990s, FDA attempted to adopt regulations to compel manufacturers to perform studies in children, if they were subject to the disease covered by the approved labeling occurred
 - 4 tiers (neonates, toddlers, pre-adolescent, and adolescent)
 - Could require new dosage forms
- Regulation invalidated on judicial review

Statutory Authority to Compel Specific Research

- In 2002, Congress empowered FDA to order manufacturer of a specific drug to conduct studies to determine whether it is safe and effective in children
 - Applies only to uses approved for adults that occur in a substantial number of children
 - Does not supersede pediatric exclusivity
 - Elaborate process before order becomes effective

Authority to Compel Research regarding Off-Label Uses

- FDA historically said that if a product was used "off-label," the manufacturer either had to get the use "on-label" or take steps to stop it
 - Rarely if ever used to compel off-label research

Observations on Authority to Compel Specific Research

- Legal uncertainty exists whether FDA's authority to require "adequate directions for use" extends to being able to order studies for subpopulations covered by the approved (on-label) use
- No case law regarding off-label use area
- Congressional enactment was narrowly tailored and replete with procedural requirements

The Limits of Regulation

- Generally, regulators are not empowered to control the direction of development for biomedical products
 - Manufacturer selects the uses it intends
 - Regulators can provide incentives to influence the selection process, but ultimately cannot veto the outcome
 - Once use is selected, regulators can influence the subpopulations within that use to be studied (but extent of power is unclear)

Should Regulators Have More Power?

- Public policy makers have several alternatives to affect the direction of biomedical research and development
 - Command-and-control regulation
 - Indirect incentives (market exclusivities, tax credits)
 - Direct incentives (contracts to develop or purchase specific products)
 - Internal R&D (use government laboratories)

What Powers Should Regulators Have?

- Who selects the products or targets to be given priority?
 - Different diseases have different constituencies
 - Social objectives may not match available scientific knowledge
- Is development in other areas to be forbidden?
- Who must do the development work in target areas?
 What options do the affected private parties have?
- What degree of coercion can be applied?

Conclusion

- The authority of regulators in limited for good reasons
 - Decentralized decision making serves both democratic and free market values
 - Command-and-control is not well-equipped to bring out investment or assure vigorous work
- To get the kind of products the public wants, policy makers should not look to increasing regulatory powers